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write here only the principal components of the in-
ternal energy, which depend on the charge density
distribution. According to [3], the electrostatic and
kinetic energies of the valence electrons can be writ-
ten in the form

Ee={2x(Ri—7)dQ, E,=287chag"e,
Q .

and the Coulomb interaction energy of a point ionic
charge with the valence electrons is

Wo=— S ZpdQ.

Q

Here the integration runs over the elementary sphere
volume Q, e is the electron charge, z is the valence,
a is the Bohr radius, and

_{ p for0<{r <R, —8,
T lp+% for Ry—O < r <R,

Integrating and considering that
PR =p, 2, +(p, +-3p) AQ,

where pis the density of the electron gas with a
uniform distribution, Q; =¥%7[R,-0)*, A Q =

Y. 1R — Ry — ©)°], py = ze/(4/3) TR}, we find that
to order 6p? the change AU in the internal energy
of the electron gas in going from a nonuniform elec-
tron density distribution to a uniform one is
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In other words, AU = 0 (the roots of the equa-
tion in the square brackets are ® =0 and ® =R,
which corresponds to the equilibrium distribution),
i.e., the transition to the more uniform spatial dis-
tribution of the electron gas density is accompanied
by an increase in the role of the attractive forces.
We will transform expression (2) to a form more
convenient for investigation. We introduce 6q =
6pAQ = const, and p is replaced by 3ze /47Rj].
Then
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If ©/Ry<«< 1, we have AU = (3/10) * (1/Ry)zedq,
i.e., in the region of very low temperatures the

energy of the metal does not depend on the distribu-
tion of the valence electrons. If we retain the terms
linear in @®,then
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Turning to the calculation of the temperature
coefficient of the compressibility in a solid metal,
we have from (1)
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Here %, is the temperature coefficient of the com-
pressibility with a uniform distribution of the elec-
tron density. Consequently, for sufficiently low
temperatures, (1/8)(dB/dT) = »y. With increasing
temperature the temperature coefficient of the com-
pressibility increases and (1 /8)(dB/dT) > w, since
dU/8@® < 0. In the high-temperature region, for
large @, 9U /00 increases perceptibly, which is ac-
companied by a still greater growth of (1/8)(dg/dT).
Such a qualitative picture is observed experimental -
ly (see [1, 6]); at low temperatures the compressibil -
ity increases 1.5 to 2 times slower on heating than
at room temperature; near the melting point the
temperature dependence of the compressibility be-
comes quite nonlinear.

Incidentally we note that the mechanism under
consideration decreases the temperature coeffi-
cient of the bulk expansion of a solid metal in com-
parison to the liquid. To be specific we consider
alkali metals. According to [3], for a uniform dis-
tribution of the electron density we have the follow-
ing expression for the energy:

U=— ,% <+ % ,
in which the equilibrium distance R between the cen-
ters of ions, which is found from the condition
9U/BR = 0,is (3B/C)¥2, where B and C are certain
constants. In such a treatment Ry does not depend
on temperature and the bulk expansion coefficient
is determined by anharmonic effects only. Taking
(3) into account gives an additional dependence of
R on the temperature, so that for quite low tem-
peratures the mechanism under consideration does
not contribute to «, while for higher temperatures
we have

10U a8
76 0T <%

v w
&|

a:ao-i—

where @ is the bulk thermal expansion coeffi-
cient for a uniform distribution of electronic charge.




